Image Analysis

Tim B. Dyrby
Rasmus R. Paulsen
DTU Compute
tbdy@dtu.dk
http://www.compute.dtu.dk/courses/02502

Lecture 10 - Advanced image registration

Klein et al 2010. (IEEE Trans Med Img)
https://elastix.lumc.nl

What can you do after today?

- Describe difference between a pixel and voxel
- Choose a general image-to-image registration pipeline
- Apply 3D geometrical affine transformations
- Use the Homogeneous coordinate system to combine transformations
- Compute a suitable similarity metric given the image modalities to register
- Compute the normalized correlation coefficient (NNC) between two images
- Compute Entropy
- Describe the concept of iterative optimizers
- Compute steps in the gradient descent optimization steps
- Apply the pyramidal principle for multi-resolution strategies
- Select a relevant registration strategy: 2D to 3D, Within- and between objects and moving images

Go to www.menti.com and use the code 3202223

Associations to a mountain view

Mount Everest - Himalayas

Image Registration pipeline

■ The input images

- Fixed image: Reference image
- Moving image: Template image

Image volumes

- Image slice: 2D (NxM) matrix of pixels
- Image volumes: 3D (NxMxP) matrix of voxels
- An element is a volume pixel i.e. voxel
- Pixel vs voxel intensity
- Integrated information within an area or volume

3D image viewing

- Three orthogonal views
- Fine structural details at slice level
- Hard to get 3D surface insight
- Rendering of surfaces
- Surface insight
- Limited to clear surfaces

Slices three orthogonal views

3D image viewing

- Three orthogonal views
- Fine structural details at slice level
- Hard to get 3D surface insight
- Rendering of surfaces
- Surface insight
- Limited to clear surfaces

Slices three orthogonal views

Coronal

Axial

Image volumes

- Stacked slices: 2D to 3D
- Object cut into slices, imaged and stacked
- Still pixels - not voxel
- Registration challenges
- Geometrical distortions between slices

Image volumes

Synchrotron x-ray imaging Tissue sample 1 mm 75 nm isotropic resolution voxels

- Intact sample
- No sample cutting
- Registration challenges:
- Stacking 3D volumes

MRI

Whole brain
1 mm isotropic resolution voxels

Andersson et al, 2020 (PNAS)

Stacked 3D volumes

Rotating sample in x-ray tomography

Image volumes

- Intact sample
- No sample cutting
- Registration challenges:
- Multi image resolution: Fit Region-of-interest image to whole object image

CT scanning

Car door AUDI A8, size: 1150 mm

Region of interest (ROI)

The inspection of a glued joint of a car body Simon et al, 2006 (ECNDT)

Image Registration pipeline

- Geometrical transformations

Geometric transformations

- Translation
- Rotation
- Scaling
- Shearing

$$
\hat{T}=\arg \min _{T} C\left(T ; I_{F}, I_{M}\right)
$$

Translation 2D vs 3D

\square The image is shifted

- 2D: Inspect one slice plan

3D: (x, y, z)-plans $\left[\begin{array}{l}\Delta x \\ \Delta y \\ \Delta z\end{array}\right]=-\left[\begin{array}{l}60 \\ 20 \\ 15\end{array}\right]$

2D: (x, y)-plan

$$
\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
60 \\
20
\end{array}\right]
$$

- 3D:Inspect three slice plans (y, z) -plan
(x, y)-plan

Rotation 3D

- The image is rotated around an origin (e.g. the centre-of-mass)
- Rotate the object around three axis hence three angles.
- Inspect all three views to identify a rotation

Original

3D Rotation coordinate system

- Three element rotations round the axes of the coordinate system
- Pitch, Yaw and Roll
- Defined differently for different systems (typ. related to the forward direction)

The principal axes of an aircraft according to the air norm DIN 9300

3D Rotation coordinate system

- Three composed element rotations
- Angles: $\alpha_{1} \boldsymbol{\beta}_{1, \gamma}$
- The order matters
- Several conventions exist
- Remember: Know your origin!

Axis-Angle representation

$\boldsymbol{R}_{X}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha\end{array}\right] \quad \boldsymbol{R}_{Y}=\left[\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right] \quad \boldsymbol{R}_{\boldsymbol{Z}}=\left[\begin{array}{ccc}\cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1\end{array}\right]$

3D Rotation coordinate system

- The Euler angel convention:
- $\boldsymbol{\alpha}$: Around the z-axis. Defines the line of nodes (N)
- $\boldsymbol{\beta}$: Around the X -axis defined by N
- $\boldsymbol{\gamma}$: Around the Z -axis from N
- The order of coordinate system rotations:
- Rotation order around the:
- z-axis: Initial: Original frame $(x, y, z): \boldsymbol{\alpha}$
- X-axis: First coordinate system rotation (X,Y,Z): $\boldsymbol{\beta}$
- Z-axis: Second coordinate system rotation $(X, Y, Z): Y$

wikipedia.org/wiki/Euler_angles

Quiz 1: Affine 3D transformation

How many parameters?

A) 6
B) 5
C) 16
D) 12
E) 3

SOLUTION:
Translation: $\mathrm{P}=3$
Rotation: $\mathrm{p}=3$
Scaling: $p=3$
Shearing: $p=3$

Scaling in 3D

- The size of the image is changed
- Three parameters:
- X-scale factor, S_{x}
- Y-scale factor, S_{y}
- Z-scale factor, S_{z}

$$
A=\left[\begin{array}{ccc}
S x & 0 & 0 \\
0 & S y & 0 \\
0 & 0 & S z
\end{array}\right]
$$

- Isotropic scaling:

$$
A=\left[\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 0.5 & 0 \\
0 & 0 & 0.5
\end{array}\right]
$$

Shearing in 3D

- Pixel shifted horizontally or/and vertically
- Three parameters

$$
A=\left[\begin{array}{ccc}
1 & S y x & S z x \\
S x y & 1 & S y z \\
S x z & S y z & 1
\end{array}\right]
$$

Shearing (z, y)-plan

Combining transformations

romeme [
$\begin{aligned} & \text { Rotations, } \\ & \text { Scaling, } \\ & \text { Shear: }\end{aligned} \quad\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

- Translation is a summation i.e. $\mathrm{P}^{\prime}=\mathrm{A}+\mathrm{P}$
- Rotation, Scale, Shear are multiplications i.e. $\mathrm{P}^{\prime}=\mathrm{A} * \mathrm{P}$
- Combine transformations multiplications:
$A=A_{T} * A R * A_{\text {shear }} * A_{s}$
- Not possible with A_{T}

Homogeneous coordinates

Cartesian coordinates:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Homogeneous coordinates:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w
\end{array}\right]=A\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

- Projective geometry
- Used in computer vision
- Adds an extra dimension to vector, W:

$$
[x, y, z, w]
$$

- How does it work?

Homogeneous coordinates

Euclidean geometry: (x, y)

- A 2D image
- Cartesian coordinates

Homogeneous coordinates

- Euclidean geometry: (x, y)
- A 2D image
- Cartesian coordinates
- Projective geometry: (x, y, W)
- "Projective space" adds an extra projective dimension, W
- Homogeneous coordinates
- A camera is projecting an image over a distance W.
- The W scales the image size: (x, y, W)

Homogeneous coordinates

- Projective geometry: (x, y, W)
- The W scales the image size: (x, y, W)
- Increasing W, the coordinates expand and the image becomes larger and vice versa
- Decreasing relatively the distance to W^{\prime} (i.e., closer) the projective coordinate vector becomes: (x/W', y/W', W/W')

Homogeneous coordinates

Example:

- Camara:
- 3 m away from the image, $W=3$
- The dot on the image is at $(15,21)$
- The projective coordinate vector is said to be
- $(15,21,3)$

Quiz 2: Homogeneous coordinates

A camara is placed at distance of 3 meter away from the image and the dot has the projective coordinate of $(15,21,3)$.
Now we move the camara closer to the image i.e., 1 m away. What is the new projective coordinate?
A) $(5,7,1)$
B) $(15,21,3)$

SOLUTION:
We move closer to the image i.e. W^{\prime} becomes 3 times smaller and so do the projective coordinates than at $W=3$: $(15 / 3,21 / 3,3 / 3)=(5,7,1)$
C) $(45,63,1)$
D) $(5,7,0,33)$
E) $(0,0,0)$

Translation transformation as a matrix

In Euclidian space
Translation: $\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]+\left[\begin{array}{l}\Delta x \\ \Delta y \\ \Delta z\end{array}\right]$

\digamma

In Projective space

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
W
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
W
\end{array}\right]+\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta z \\
W
\end{array}\right] \text { or }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
W
\end{array}\right]=A_{T}\left[\begin{array}{c}
x \\
y \\
z \\
W
\end{array}\right] \quad \text { where } A_{T}=\left[\begin{array}{llll}
1 & 0 & 0 & \Delta x \\
0 & 1 & 0 & \Delta y \\
0 & 0 & 1 & \Delta z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Transformations in Projective space

Translation: $\quad A_{T}=\left[\begin{array}{cccc}1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1\end{array}\right]$
Rotations:

- x=pitch
- $y=$ roll
- z=yaw

$$
R_{x}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (\alpha) & \sin (\alpha) & 0 \\
0-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] R_{y}=\left[\begin{array}{cccc}
\cos (\beta) & 0 \sin (\beta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\beta) & 0 & \cos (\beta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
R_{z}=\left[\begin{array}{cccc}
\cos (\gamma) & \sin (\gamma) & 0 & 0 \\
-\sin (\gamma) & \cos (\gamma) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Scaling: $\quad A_{S}=\left[\begin{array}{cccc}S x & 0 & 0 & 0 \\ 0 & S y & 0 & 0 \\ 0 & 0 & S z & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Shear: $\quad A_{z}=\left[\begin{array}{cccc}1 & S x y & S x z & 0 \\ S x y & 1 & S y z & 0 \\ S x z & S y z & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

- Axis-Angle representation

Affine transformation: $\quad A=\underbrace{}_{T} *\left(R_{x} * R_{y} * R_{z}\right) * A_{z} * A_{S}$

Combining transformations - step by step

Remember:

- Typical calculated in radians
- Same procedure for 2D and 3D images

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right] \quad \text {, } \begin{array}{l}
\text { Step 1:Covert 3D to 4D projective space, } \\
\text { set W=1. Make translation into a matrix }
\end{array}} \\
A=A_{T} *\left(R_{x} * R_{y} * R_{z}\right) * A_{z} * A_{S} \quad \text {, Step 2:Multiply all 4D metrices } \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=A \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \quad \text {, Step 3:Apply the transformation to a point }} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=A \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \text { - Step 4:Convert back to 3D Cartesian }}
\end{gathered}
$$

Different transformations

- Linear: Affine transformation
- Non-linear: Piece-wise affine or B-spline
- Remember: First to apply the linear transformations!

Image Registration pipeline

- Similarity measures

Similarity measures
 - Anatomical Landmarks

- time consuming to obtain positions manually
- Alternative: Joint intensity histogram

Similarity measure: Mean squared difference (MSD)

- Compare difference in intensities.
- Same similarity measure we used for anatomical landmarks (positions) in a previous lecture
- Super fast to estimate
- Many local minima's (sub optimal solutions)
- Intensities are not optimal for this similarity metric

$$
\operatorname{MSD}\left(\boldsymbol{\mu} ; I_{F}, I_{M}\right)=\frac{1}{\left|\Omega_{F}\right|} \sum_{\boldsymbol{x}_{i} \in \Omega_{F}}\left(I_{F}\left(\boldsymbol{x}_{i}\right)-I_{M}\left(\boldsymbol{T}_{\boldsymbol{\mu}}\left(\boldsymbol{x}_{i}\right)\right)\right)^{2}
$$

Similarity measure: Normalised Crosscorrelation

- Normalised Cross-correlation of intensities in two images
- Fast to estimate
- Risk of local minima's (sub optimal solutions)
- Less robust if image modalities have different intensity histograms
- Normalise: Reduce the impact of outlier regions
$\operatorname{NCC}\left(\boldsymbol{\mu} ; I_{F}, I_{M}\right)=\frac{\sum_{\boldsymbol{x}_{i} \in \Omega_{F}}\left(I_{F}\left(\boldsymbol{x}_{i}\right)-\overline{I_{F}}\right)\left(I_{M}\left(\boldsymbol{T}_{\mu}\left(\boldsymbol{x}_{i}\right)\right)-\overline{I_{M}}\right)}{\sqrt{\sum_{\boldsymbol{x}_{i} \in \Omega_{F}}\left(I_{F}\left(\boldsymbol{x}_{i}\right)-\overline{I_{F}}\right)^{2} \sum_{\boldsymbol{x}_{i} \in \Omega_{F}}\left(I_{M}\left(\boldsymbol{T}_{\mu}\left(\boldsymbol{x}_{i}\right)\right)-\overline{I_{M}}\right)^{2}},}$
with the average grey-values $\overline{I_{F}}=\frac{1}{\left|\Omega_{F}\right|} \sum_{F} I_{F}\left(\boldsymbol{x}_{i}\right)$ and $\overline{I_{M}}=\frac{1}{\Omega_{F} \mid} \sum_{M} I_{M}\left(\boldsymbol{T}_{\mu}\left(\boldsymbol{x}_{i}\right)\right)$.

Joint intensity histograms

- Perfect registered: Optimal joint intensity agreement

Joint intensity histograms

- Small translation difference: Lower joint intensity agreement

Similarity measure - Entropy

- Comes from information theory.
- The higher the entropy the more the information content.
- Entropy (Shannon-Weiner):

$$
H=-\sum_{i} p_{i} \log _{b} p_{i}
$$

Where b : the base of the logarithm

- Bits: $b=2$ and bans: $b=10$
- Entropy is typically in bits i.e. typical used in digital information

Quiz 3: Highest entropy?
I went to the candy shop and wanted to select the cady mixture that have the highest entropy. Each candy mixture include in total 27 pieces. Which one should I select?
A) $\operatorname{Mix} 1$
B) Make a new choice
C) Contain no liquorice
D) Mix 2
E) It is not healthy

Candy mix 2

Quiz 4 :What is the entropy of the candy mix 1 ?

Candy mix 1

A) 0.38
B) 0.99
C) 0.45
D) 0.23
E) 0.00

SOLUTION:
Green=13
Pink=14
Total $=27$

$$
\begin{aligned}
& \mathrm{pG}=13 / 27 \\
& \mathrm{pP}=14 / 27 \\
& \text { Entropy }=-\mathrm{pG} * \log _{2}(\mathrm{pG})-\mathrm{pP} * \log _{2}(\mathrm{pP})=0.99
\end{aligned}
$$

Histograms of images

Joint entropy - Mutual information

- Joint entropy $H=-\sum_{X, Y} p_{X, Y} \log p_{X, Y}$
- Similarity measure: The more similar the distributions, the lower the joint entropy compared to the sum of the individual entropies

$$
H(X, Y) \leq H(X)+H(Y)
$$

Example of rotation (Pluim et al, 2003, TMI)

Contrast in joint histograms

- The histogram of the two images must reflect contrast to similar structures for image registration to be successful

Image Registration pipeline

- The optimiser

- How to find the transformation parameters?

The optimizer

- We have an objective function describing:
- A cost function (C) based on a similarity metric
- Quantifying how well a geometrical transformation ($T(w)$)maps an image (moving, I_{M}) into another (fixed, I_{F})
- Hence, a good match is a minimum difference:

$$
\widehat{T}_{w}=\arg \min _{T_{w}} \mathrm{C}\left(T_{w} ; I_{F}, I_{M}\right)
$$

The parameters

$w \in \mathcal{R}^{p}$

- The parameters is a vector with p elements
- The type of transformation and the dimension of the dataset set the number of parameters
- Translation p = 2 or 3 (3D)
- Rotation $p=1$ or 3 (3D)
- Scaling p = 1

Optimization by minimization

- Find the parameter set that minimizes the objective function
- How to find the solution?
- Analytical: Works fine for landmark registration with few points
- Numerical: Iterative approaches to search for a solution

$$
\text { To find: } \quad \widehat{w}=\arg \min _{w} C
$$

We simply differentiate w.r.t. w:

$$
\frac{\partial C}{\partial w}=0
$$

The challenge

- w span a p-dimensional space $\boldsymbol{w}=\left[w_{1}, w_{2,}, \ldots, w_{p}\right]^{\top}$
- Complex parameter space with many data points
- Finding the lowest place in mountains

Iterative optimisation

- Aim: Find in parameter space $w: \frac{\partial C}{\partial w}=0$ i.e. a global minima
- Search all possible combinations of w? (not a good idea)
- Systematically search the parameter space = Good idea
- Iterative optimisation strategies
- Step-wise searching the parameter space
- Many methods exist

Contour plot of 2D parameter space (w1,w2)

- Gradient based
- Genetic evolution

Gradient descent

- Definition: $\mathrm{C}(\boldsymbol{w})$ is differentiable in neighbourhood of a point w_{n}
- $\mathrm{C}(\boldsymbol{w})$ decreases in the negative gradient direction of w_{n}.
- $w_{n+1}=w_{n}-\gamma \nabla C\left(w_{n}\right)$
- $\nabla C\left(w_{n}\right)$: Gradient direction at point w_{n}
- γ : Step length --> If small enough: $\mathbf{C}\left(\boldsymbol{w}_{n}\right) \geq \mathbf{C}\left(\boldsymbol{w}_{n+1}\right)$

Procedure:

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:-\nabla C\left(x_{n}\right)=-\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_{0}=[1,1]^{\top}$

Iteration:1

From a Matlab function: grad_descent.m By James T. Allison

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:-\nabla C\left(x_{n}\right)=-\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_{0}=[1,1]^{\top}$

Iteration:2

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:-\nabla C\left(x_{n}\right)=-\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_{0}=[1,1]^{\top}$

Iteration:3

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:-\nabla C\left(x_{n}\right)=-\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_{0}=[1,1]^{\top}$

Iteration:37 (final)

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:-\nabla C\left(x_{n}\right)=-\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_{0}=[0,-1]^{\top}$
- Can find solution from any place
- No local minima's nearby

Iteration:31 (final)

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:+\nabla C\left(x_{n}\right)=+\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_{0}=[0.5,0.5]^{\top}$
- If use positive gradient
- WRONG DIRECTION!

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:-\nabla C\left(x_{n}\right)=-\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.0001$;
- Max steps: 1000
- Start position: $x_{0}=[1,1]^{\top}$
- Too small step size -many steps
- Do not find a solution

Iteration: 1000 (final)

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:-\nabla C\left(x_{n}\right)=-\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.2$ (optimal)
- Max steps: 1000
- Start position: $x_{0}=[1,1]^{\top}$
- Few steps: Optimal step size

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:-\nabla C\left(x_{n}\right)=-\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.3$
- Max steps: 1000
- Start position: $x_{0}=[1,1]^{\top}$
- Too large step size - unstable
- Sensitive to local minima's
- Solution: Dynamic step length

Gradient descent

- Cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
- Gradient at point $x_{n}:-\nabla C\left(x_{n}\right)=-\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$
- Step length: $\gamma=0.1$
- Max steps: 1000
- Start position: $x_{0}=[1,1]^{\top}$
- Noisy data: Cannot find optimum

Quiz 5: What is the updated position xnew?

Model fitting uses a cost function: $\mathrm{C}(\mathrm{x})=x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}$
and an iterative optimizer Gradient descent with a step length of 0.2

What is the new position of xnew $=[?, ?]^{\top}$ after one step from position $x=[1,0]^{\top} ?$
A) $[0.3,2.3]^{\top}$
B) $[-1.7,0.3]^{\top}$
C) $[1.4,0.2] \mathrm{T}$
D) $[0.6,-0.2]^{\top}$
E) $[5.2,2.2]^{\top}$

Solution:

1) Calculate the gradient for $x=[1,0]^{\top}$

- differentiate $C: \nabla C(x)=\left[\begin{array}{l}2 x_{1}+x_{2} \\ x_{1}+6 x_{2}\end{array}\right]$ $\nabla C\left([1,0]^{\top}\right)=[2,1]^{\top}$

2) Update the step: $x_{\text {new }}=x-\nabla C *$ stepLength

- xnew $=[1,0]^{\top}-0.2 *[2,1]^{\top}=[0.6,-0.2]^{\top}$

Image Registration pipeline

- The sampler

- How many data points for a robust similarity measure?

The sampler

- Calculating the similarity metrics:
- Summing over all pixels/voxels in an image is VERY time consuming
- Selecting a sparse sampling strategy
- Reducing CPU load and reduce memory load when
- Efficient selection of image points

The sampler

- Sparser sampling: Similar scatter plot
- Define a good compromise (sample the whole image)
- Ordered vs Random
- Spatial dependency: Dependent on large homogeneous structures
- Very sparse sampling: Risk not sampling small structures

Ordered

Random

Image Registration pipeline

- Interpolation
- To map the intensities from the template image to the grid of the reference image via a transformation matrix

A FLASH BACK to a previous Lecture: Forward vs Backward mapping

- In a nut shell
- Going backward we need to invers the transformation

Interpolation methods

■ Enhances structural boundaries

- Higher-order interpolation methods: Reduce blurring

■ May visually appear "sharper"

- Do not change the image information!
- Only if combining interpolated images w. different information of the same object - e.g. different angles of moving object e.g. car
\rightarrow Super resolution (another topic)

Figure 2.4: Interpolation. (a) nearest neighbour, (b) linear, (c) B-spline $N=2$, (d) B-spline $N=3$, (e) B-spline $N=5$.

Image Registration pipeline

- Pyramid

The Pyramid Principle
 - To ensure robust image registration

The Pyramid Principle
 - To ensure robust image registration

The Pyramid Principle

- A Multi-resolution strategy
- To ensure robust image registration

- To reduce local minima's
- What is a prober image resolution level?

The Pyramid Principle

- Lower image resolution
- Down sampling (memory reduction, fewer data)
- Less structural details
- Smoothing (Complex method settings become more general)

Image Registration pipeline

- At the end we just select an existing tool
- Still, we need how too select method settings
- This was the first step in the registration pipeline

Combining Image Registration pipelines

- First step : Within subjects (Same structure + temporal)
- Second step: Between subjects (different structure+ temporal)
- Can use an iterative procedure to improve registration
- Combine subject-wise transformation metrics by multiplication
- Apply only one interpolation at the end to minimise blurring

Quiz 6: Quality inspection - How

How to quality assurance (QA) the image registration results?
A) Use a similarity measure
B) Visual inspection
C) No need it to - just works
D) Sum of square difference
E) Search the internet for experience

Image Registration pipeline strategy

\square Within subjects and between challenges

- E.g. Histology 2D \rightarrow 3D: Structural difference between slices
- Visually inspect your results!!

Image Registration pipeline strategy

- Within subjects across time points (temporal)
- Remove image distortions + subjection motion

■ Visually inspect your results!!

What did you learn today?

- Describe difference between a pixel and voxel
- Choose a general image-to-image registration pipeline
- Apply 3D geometrical affine transformations
- Use the Homogeneous coordinate system to combine transformations
- Compute a suitable similarity metric given the image modalities to register
- Compute the normalized correlation coefficient (NNC) between two images
- Compute Entropy
- Describe the concept of iterative optimizers
- Compute steps in the gradient descent optimization steps
- Apply the pyramidal principle for multi-resolution strategies
- Select a relevant registration strategy: 2D to 3D, Within- and between objects and moving images

Next week - Real-time face detection using Viola Jones method

