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Lecture 10 – Advanced image registration

Klein et al 2010. (IEEE Trans Med Img)
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What can you do after today?
 Describe difference between a pixel and voxel
 Choose a general image-to-image registration pipeline 
 Apply 3D geometrical affine transformations
 Use the Homogeneous coordinate system to combine transformations
 Compute a suitable similarity metric given the image modalities to 

register
 Compute the normalized correlation coefficient (NNC) between two 

images
 Compute Entropy
 Describe the concept of iterative optimizers
 Compute steps in the gradient descent optimization steps
 Apply the pyramidal principle for multi-resolution strategies
 Select a relevant registration strategy: 2D to 3D, Within- and between 

objects and moving images
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Mount Everest - Himalayas
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Image Registration pipeline
 The input images

– Fixed image: Reference image
– Moving image: Template image
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Image volumes
 Image slice: 2D (NxM) matrix of pixels
 Image volumes: 3D (NxMxP) matrix of voxels

– An element is a volume pixel i.e. voxel
 Pixel vs voxel intensity

– Integrated information within an area or volume

2D Slice 3D volume
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3D image viewing
 Three orthogonal views

– Fine structural details at slice level
– Hard to get 3D surface insight

 Rendering of surfaces
– Surface insight
– Limited to clear surfaces

CoronalSagittal Axial
Slices three orthogonal views

A
xi

al

Coronal

3D rendering
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3D image viewing
 Three orthogonal views

– Fine structural details at slice level
– Hard to get 3D surface insight

 Rendering of surfaces
– Surface insight
– Limited to clear surfaces

CoronalSagittal Axial
Slices three orthogonal views
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xi

al

Coronal

3D rendering

www.dreamstime.com/illustration/truck-top-view.html
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Image volumes
 Stacked slices: 2D to 3D

– Object cut into slices, imaged and stacked
– Still pixels – not voxel

 Registration challenges
– Geometrical distortions between slices 3D volume
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Image volumes
 Intact sample

– No sample cutting

 Registration challenges:
– Stacking 3D volumes

2D Slice 3D volume

Synchrotron x-ray imaging
Tissue sample 1mm

75 nm isotropic resolution voxels

MRI
Whole brain 

1 mm isotropic resolution voxels

Stacked 3D volumes

Andersson et al, 2020 (PNAS)
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Image volumes
 Intact sample

– No sample cutting

 Registration challenges:
– Multi image resolution: Fit Region-of-interest image to whole object image

3D volume

Rotating sample in x-ray tomography 

The inspection of a glued joint of a car body

CT of ROI
(non-destructive)

Region of 
interest (ROI)

Microscope
(destructive)CT scanning 

Simon et al, 2006 (ECNDT)
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Image Registration pipeline
 Geometrical transformations
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Geometric transformations
 Translation
 Rotation
 Scaling
 Shearing

Fixed image (TF) Moving image (IM)

�𝑇𝑇 = arg min
𝑇𝑇
∁(𝑇𝑇; 𝐼𝐼𝐹𝐹 , 𝐼𝐼𝑀𝑀)

(Reference image) (Template image)
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Translation 2D vs 3D
 The image is shifted

– 2D: Inspect one slice plan
– 3D:Inspect three slice plans

∆𝑥𝑥
∆𝑦𝑦 = 60

20

2D: (x,y)-plan

(y,z) -plan (x,z)-plan (x,y)-plan

∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧

= −
60
20
15

3D: (x,y,z)-plans

∆𝑧𝑧
∆𝑥𝑥

∆𝑦𝑦

z

Y
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Rotation 3D
 The image is rotated around an origin (e.g. the centre-of-mass)
 Rotate the object around three axis hence three angles.

– Inspect all three views to identify a rotation
Original

Rotated: 27 degree counter-clockwise around only the y-axis

z-axis
x-axis

y-axis

z

Y
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3D Rotation coordinate system
 Three element rotations round the axes of the coordinate system
 Pitch, Yaw and Roll

– Defined differently for different systems (typ. related to the forward direction)

The principal axes of an aircraft 
according to the air norm DIN 9300

https://en.wikipedia.org/wiki/Aircraft_principal_axes
https://en.wikipedia.org/wiki/Deutsches_Institut_f%C3%BCr_Normung
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3D Rotation coordinate system
 Three composed element rotations

– Angles: 𝝰𝝰,𝝱𝝱, 𝝲𝝲

 The order matters 
– Several conventions exist

 Remember: Know your origin!

RollPitch Yaw

Axis-Angle representation

y

x

z

Rx

Rz
Ry
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3D Rotation coordinate system
 The Euler angel convention:

– 𝝰𝝰: Around the z-axis. Defines the line of nodes (N)
– 𝝱𝝱: Around the X-axis defined by N
– 𝝲𝝲: Around the Z-axis from N

 The order of coordinate system rotations:
– Rotation order around the:
– z-axis: Initial: Original frame (x,y,z): 𝝰𝝰
– X-axis: First coordinate system rotation (X,Y,Z): 𝝱𝝱
– Z-axis: Second coordinate system rotation (X,Y,Z):𝝲𝝲

wikipedia.org/wiki/Euler_angles
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Quiz 1: Affine 3D transformation

A) 6
B) 5
C) 16
D) 12
E) 3

How many parameters?

SOLUTION:

Translation: P=3

Rotation: p=3

Scaling: p=3

Shearing: p=3
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Scaling in 3D
 The size of the image is changed
 Three parameters:

– X-scale factor, Sx
– Y-scale factor, Sy
– Z-scale factor, Sz

 Isotropic scaling: 

A =
𝑆𝑆𝑥𝑥 0 0
0 𝑆𝑆𝑦𝑦 0
0 0 𝑆𝑆𝑧𝑧

y

z 𝐴𝐴 =
0.5 0 0
0 0.5 0
0 0 0.5



DTU Compute

2023Image Analysis – 0250221 DTU Compute, Technical University of Denmark

Shearing in 3D
 Pixel shifted horizontally or/and vertically
 Three parameters

𝐴𝐴 =
1 𝑆𝑆𝑦𝑦𝑥𝑥 𝑆𝑆𝑧𝑧𝑥𝑥
𝑆𝑆𝑥𝑥𝑦𝑦 1 𝑆𝑆𝑦𝑦𝑧𝑧
𝑆𝑆𝑥𝑥𝑧𝑧 𝑆𝑆𝑦𝑦𝑧𝑧 1

y

z

Shearing (z,y)-plan
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Combining transformations

Translation:

Rotations,
Scaling, 
Shear:

𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥

= 𝐴𝐴
𝑥𝑥
𝑦𝑦
𝑧𝑧

𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥

=
∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧

+
𝑥𝑥
𝑦𝑦
𝑧𝑧

 Translation is a summation i.e. 
P’=A+P

 Rotation, Scale, Shear are 
multiplications i.e. P’=A*P

 Combine transformations 
multiplications:

 Not possible with AT

𝐴𝐴 = 𝐴𝐴𝑇𝑇 ∗ 𝐴𝐴𝐴𝐴 * 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠* 𝐴𝐴𝑠𝑠
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Homogeneous coordinates
 Projective geometry

– Used in computer vision

 Adds an extra dimension to 
vector, W:

 How does it work?

Cartesian coordinates:

Homogeneous coordinates:

𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥

= 𝐴𝐴
𝑥𝑥
𝑦𝑦
𝑧𝑧

𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥
𝑤𝑤

= 𝐴𝐴

𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑤𝑤

𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤
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Homogeneous coordinates

 Euclidean geometry: (x,y)
– A 2D image
– Cartesian coordinates

www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-

projective-geometry/



DTU Compute

2023Image Analysis – 0250225 DTU Compute, Technical University of Denmark

Homogeneous coordinates

 Euclidean geometry: (x,y)
– A 2D image
– Cartesian coordinates

 Projective geometry: (x,y,W)
– “Projective space” adds an extra 

projective dimension, W
– Homogeneous coordinates
– A camera is projecting an image 

over a distance W.
– The W scales the image size:

(x,y,W)
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Homogeneous coordinates

 Projective geometry: (x,y,W)
– The W scales the image size:

(x,y,W)
– Increasing W, the coordinates 

expand and the image becomes 
larger and vice versa 

– Decreasing relatively the distance 
to W’ (i.e., closer) the projective 
coordinate vector becomes:
(x/W’, y/W’, W/W’)

W’
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Homogeneous coordinates

Example:
 Camara:

– 3 m away from the image, W=3
– The dot on the image is at (15,21)

 The projective coordinate vector 
is said to be
– (15, 21, 3)
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Quiz 2: Homogeneous coordinates
A camara is placed at distance 
of 3 meter away from the image 
and the dot has the projective 
coordinate of (15,21,3).
Now we move the camara closer 
to the image i.e., 1 m away. 
What is the new projective 
coordinate?

A) (5,7,1)
B) (15,21,3)
C) (45,63,1)
D) (5,7,0.33)
E) (0,0,0)

SOLUTION:

We move closer to the image i.e. W’
becomes 3 times smaller and so do the 
projective coordinates than at W=3:

(15/3,21/3,3/3)=(5,7,1)
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Translation transformation as a matrix

Translation:
𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥

=
𝑥𝑥
𝑦𝑦
𝑧𝑧

+
∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐴𝐴𝑇𝑇 =
1
0
0
0

0
1
0
0

0
0
1
0

∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧
1

𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥
𝑊𝑊

=

𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑊𝑊

+

∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧
𝑊𝑊

𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥
𝑊𝑊

= 𝐴𝐴𝑇𝑇

𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑊𝑊

or

In Projective space

 Geometrical transformations
– Use Homogeneous coordinates
– Set W=1 we ‘covert’ 3D  4D space
– Translation transformation expressed 

as a matrix AT

In Euclidian space
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Transformations in Projective space 
Translation:

Rotations:
- x=pitch
- y=roll
- z=yaw

Affine transformation:

Scaling:

𝐴𝐴𝑥𝑥 =
1
0
0
0

0
cos(𝛼𝛼)
−sin(𝛼𝛼)

0

0
sin(𝛼𝛼)
cos(𝛼𝛼)

0

0
0
0
1

𝐴𝐴𝑠𝑠 =
𝑆𝑆𝑥𝑥
0
0
0

0
𝑆𝑆𝑦𝑦
0
0

0
0
𝑆𝑆𝑧𝑧
0

0
0
0
1

𝐴𝐴 = 𝐴𝐴𝑇𝑇 ∗ (𝐴𝐴𝑥𝑥* 𝐴𝐴𝑦𝑦 ∗ 𝐴𝐴𝑧𝑧) * 𝐴𝐴𝑧𝑧* 𝐴𝐴𝑠𝑠

𝐴𝐴𝑧𝑧 =

1
𝑆𝑆𝑥𝑥𝑦𝑦
𝑆𝑆𝑥𝑥𝑧𝑧

0

𝑆𝑆𝑥𝑥𝑦𝑦
1
𝑆𝑆𝑦𝑦𝑧𝑧

0

𝑆𝑆𝑥𝑥𝑧𝑧
𝑆𝑆𝑦𝑦𝑧𝑧
1
0

0
0
0
1

Shear:

Rigid

𝐴𝐴𝑇𝑇 =
1
0
0
0

0
1
0
0

0
0
1
0

∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧
1

𝐴𝐴𝑦𝑦 =
cos(𝛽𝛽)

0
−sin(𝛽𝛽)

0

0
1

0
0

sin(𝛽𝛽)
0

cos(𝛽𝛽)
0

0
0
0
1

𝐴𝐴𝑧𝑧 =

cos(𝛾𝛾)
−sin(𝛾𝛾)

0
0

sin(𝛾𝛾)
cos(𝛾𝛾)

0
0

0
0

1
0

0
0
0
1

github.com/fieldtrip/fieldtrip/blob/master/external/spm8/spm_matrix.m

• Axis-Angle representation
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Combining transformations – step by step

𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥

=
𝑥𝑥
𝑦𝑦
𝑧𝑧

+
∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧

 Step 1:Covert 3D to 4D projective space, 
set W=1. Make translation into a matrix

 Step 3:Apply the transformation to a point 
𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥
1

= 𝐴𝐴 �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

𝐴𝐴 = 𝐴𝐴𝑇𝑇 ∗ (𝐴𝐴𝑥𝑥* 𝐴𝐴𝑦𝑦 ∗ 𝐴𝐴𝑧𝑧) * 𝐴𝐴𝑧𝑧* 𝐴𝐴𝑠𝑠  Step 2:Multiply all 4D metrices 

 Step 4:Convert back to 3D Cartesian 
coordinates by ignoring the W dimension

𝑥𝑥𝑥
𝑦𝑦𝑥
𝑧𝑧𝑥

= 𝐴𝐴 �
𝑥𝑥
𝑦𝑦
𝑧𝑧

Remember: 
- Typical calculated in radians
- Same procedure for 2D and 3D images
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Different transformations
 Linear: Affine transformation
 Non-linear: Piece-wise affine or B-spline

– Remember: First to apply the linear transformations! 
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Image Registration pipeline
 Similarity measures
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Similarity measures
 Anatomical Landmarks

– time consuming to obtain positions manually
– Alternative: Joint intensity histogram

- Same subject

- Same intensity histogram 

- Same subject

- Different intensity histogram

- Same subject

- Different intensity histogram 

Reference

Templates

A?

A?

A?

T1W T2W

FLAIR

T1W

MRI scans
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Similarity measure: Mean squared 
difference (MSD)
 Compare difference in intensities. 

– Same similarity measure we used for anatomical landmarks (positions) in a 
previous lecture

– Super fast to estimate

 Many local minima’s (sub optimal solutions) 
– Intensities are not optimal for this similarity metric
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Similarity measure: Normalised Cross-
correlation
 Normalised Cross-correlation of intensities in two images

– Fast to estimate

 Risk of local minima’s (sub optimal solutions) 
– Less robust if image modalities have different intensity histograms
– Normalise: Reduce the impact of outlier regions
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Joint intensity histograms 
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 Perfect registered: Optimal joint intensity agreement
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Joint intensity histograms 
S
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e 
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 Small translation difference: Lower joint intensity agreement
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Similarity measure - Entropy
 Comes from information theory.

– The higher the entropy the more the information content.

 Entropy (Shannon-Weiner):

𝐻𝐻= -∑𝑖𝑖 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏 𝑝𝑝𝑖𝑖
Where b: the base of the logarithm

- Bits: b=2 and bans: b=10
- Entropy is typically in bits i.e. typical used in digital information
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Quiz 3: Highest entropy?

A) Mix 1
B) Make a new choice
C) Contain no liquorice
D) Mix 2
E) It is not healthy

I went to the candy shop and wanted 
to select the cady mixture that have 
the highest entropy. Each candy 
mixture include in total 27 pieces. 
Which one should I select?

Candy mix 1

Candy mix 2
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Quiz 4:What is the entropy of the candy mix 1?

A) 0.38
B) 0.99
C) 0.45
D) 0.23
E) 0.00

Candy mix 1

SOLUTION:
Green=13
Pink=14
Total=27

pG=13/27
pP=14/27
Entropy= -pG*log2(pG)-pP*log2(pP)=0.99
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Histograms of images
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Joint entropy - Mutual information
 Joint entropy

 Similarity measure: The more similar the distributions, the 
lower the joint entropy compared to the sum of the individual 
entropies

𝐻𝐻=- ∑𝑋𝑋,𝑌𝑌 𝑝𝑝𝑋𝑋,𝑌𝑌 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑋𝑋,𝑌𝑌

𝐻𝐻(X,Y)≤ 𝐻𝐻 𝑋𝑋 + 𝐻𝐻(𝑌𝑌)

en.wikipedia.org/wiki/Mutual_information Example of rotation (Pluim et al., 2003, TMI)

0 degrees 2 degrees 5 degrees 10 degrees
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Contrast in joint histograms 
 The histogram of the two images must reflect contrast to 

similar structures for image registration to be successful
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Image Registration pipeline
 The optimiser

– How to find the transformation parameters?
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The optimizer
We have an objective function describing: 

– A cost function (C) based on a similarity metric
 Quantifying how well a geometrical transformation (T(𝑤𝑤))maps an 

image (moving, IM) into another (fixed, IF)

 Hence, a good match is a minimum difference:

�𝑇𝑇𝑤𝑤 = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑤𝑤

∁ 𝑇𝑇𝑤𝑤; 𝐼𝐼𝐹𝐹 , 𝐼𝐼𝑀𝑀
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The parameters
 The parameters is a vector 

with p elements 
 The type of transformation and 

the dimension of the dataset set 
the number of parameters
– Translation p = 2 or 3 (3D)
– Rotation p = 1 or 3 (3D)
– Scaling p = 1

𝑤𝑤 ∈ ℛ𝑝𝑝
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Optimization by minimization 
 Find the parameter set that minimizes the objective function
 How to find the solution?

– Analytical: Works fine for landmark registration with few points
– Numerical: Iterative approaches to search for a solution

𝜕𝜕𝐶𝐶
𝜕𝜕𝑤𝑤 = 0

We simply differentiate w.r.t. w:

�𝑤𝑤 = arg min
𝑤𝑤

𝐶𝐶To find: 
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The challenge
 w span a p-dimensional space  w=[w1,w2, ...,wp]T

 Complex parameter space with many data points
– Finding the lowest place in mountains

C(w)

w

�𝑤𝑤𝑜𝑜𝑝𝑝𝑜𝑜𝑖𝑖𝑜𝑜𝑠𝑠𝑜𝑜
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Iterative optimisation
 Aim: Find in parameter space w:              i.e. a global minima 

– Search all possible combinations of w? (not a good idea)
– Systematically search the parameter space = Good idea 

 Iterative optimisation strategies
– Step-wise searching the parameter space

 Many methods exist
– Gradient based
– Genetic evolution
– ...

𝜕𝜕𝐶𝐶
𝜕𝜕𝑤𝑤

= 0

Contour plot of 2D parameter space (w1,w2)



DTU Compute

2023Image Analysis – 0250251 DTU Compute, Technical University of Denmark

Gradient descent
 Definition: C(w) is differentiable in neighbourhood of a point wn

 C(w) decreases in the negative gradient direction of wn.
 𝑤𝑤𝑛𝑛+1 = 𝑤𝑤𝑛𝑛 − 𝛾𝛾∇𝐶𝐶(𝑤𝑤𝑛𝑛)

– ∇𝐶𝐶(𝑤𝑤𝑛𝑛): Gradient direction at point wn

– 𝛾𝛾: Step length --> If small enough: C(𝒘𝒘𝑛𝑛) ≥ C(𝒘𝒘𝑛𝑛+1)

∇𝐶𝐶 𝑤𝑤𝑛𝑛+1 =
𝜕𝜕𝐶𝐶
𝜕𝜕𝑤𝑤 ≈ 0

5) Solution: Global minima

𝛾𝛾 0) Define a step length

∇𝐶𝐶(𝑤𝑤1) 4) Repeat 2)+3) 

∇𝐶𝐶(𝑤𝑤0) 1) Start guess of a position

2) Find gradient
3) Take a step

Procedure:
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: −∇𝐶𝐶 𝑥𝑥𝑛𝑛 = − 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.1; 
 Max steps: 1000
 Start position: x0=[1,1]T

Iteration:1

From a Matlab function: grad_descent.m
By James T. Allison
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: −∇𝐶𝐶 𝑥𝑥𝑛𝑛 = − 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.1; 
 Max steps: 1000
 Start position: x0=[1,1]T

Iteration:2
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: −∇𝐶𝐶 𝑥𝑥𝑛𝑛 = − 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.1; 
 Max steps: 1000
 Start position: x0=[1,1]T

Iteration:3
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: −∇𝐶𝐶 𝑥𝑥𝑛𝑛 = − 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.1; 
 Max steps: 1000
 Start position: x0=[1,1]T

Iteration:37 (final)
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: −∇𝐶𝐶 𝑥𝑥𝑛𝑛 = − 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.1; 
 Max steps: 1000
 Start position: x0=[0,-1]T

 Can find solution from any place
 No local minima’s nearby

Iteration:31 (final)
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: +∇𝐶𝐶 𝑥𝑥𝑛𝑛 = + 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.1; 
 Max steps: 1000
 Start position: x0=[0.5,0.5]T

 If use positive gradient 
– WRONG DIRECTION!
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: −∇𝐶𝐶 𝑥𝑥𝑛𝑛 = − 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.0001; 
 Max steps: 1000
 Start position: x0=[1,1]T

 Too small step size –many steps
 Do not find a solution

Iteration:1000 (final)
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: −∇𝐶𝐶 𝑥𝑥𝑛𝑛 = − 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.2 (optimal)
 Max steps: 1000
 Start position: x0=[1,1]T

 Few steps: Optimal step size

Iteration:17 (final)
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: −∇𝐶𝐶 𝑥𝑥𝑛𝑛 = − 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.3
 Max steps: 1000
 Start position: x0=[1,1]T

 Too large step size – unstable
 Sensitive to local minima’s
 Solution: Dynamic step length

Iteration:65 (final)
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Gradient descent
 Cost function:C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

 Gradient at point xn: −∇𝐶𝐶 𝑥𝑥𝑛𝑛 = − 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

 Step length: 𝛾𝛾=0.1 
 Max steps: 1000
 Start position: x0=[1,1]T

 Noisy data: Cannot find optimum

Iteration:1000 (final)
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Quiz 5:What is the updated position xnew?
Model fitting uses a cost function: C x = 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22

and an iterative optimizer Gradient descent with a step length of 0.2

What is the new position of xnew =[?,?]T after one step from position x=[1, 0]T?

Solution:
1) Calculate the gradient for x=[1,0]T

• differentiate C: ∇𝐶𝐶 𝑥𝑥 = 2𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1 + 6𝑥𝑥2

∇𝐶𝐶([1,0]T)= [2,1]T

2) Update the step: xnew=x- ∇𝐶𝐶*stepLength
• xnew=[1,0]T-0.2*[2,1]T=[0.6, -0.2]T

A) [0.3,2.3]T

B) [-1.7,0.3]T

C) [1.4,0.2]T
D) [0.6,-0.2]T

E) [5.2,2.2]T
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Image Registration pipeline
 The sampler

– How many data points for a robust similarity measure? 
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The sampler
 Calculating the similarity metrics: 

– Summing over all pixels/voxels in an image is VERY time 
consuming

 Selecting a sparse sampling strategy
– Reducing CPU load and reduce memory load when 
– Efficient selection of image points
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The sampler A
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 Sparser sampling: Similar scatter plot
– Define a good compromise (sample the whole image)

 Ordered vs Random
– Spatial dependency: Dependent on large homogeneous structures
– Very sparse sampling: Risk not sampling small structures
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Image Registration pipeline
 Interpolation

– To map the intensities from the template image to the grid 
of the reference image via a transformation matrix 
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A FLASH BACK to a previous Lecture: 

Forward vs Backward mapping
 In a nut shell

– Going backward we need to invers the transformation

Template
(moving)

Reference 
(fixed)

A-1

A
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Interpolation methods
 Enhances structural boundaries

– Higher-order interpolation methods: Reduce blurring

 May visually appear “sharper”
– Do not change the image information!
– Only if combining interpolated images w. different information of the 

same object – e.g. different angles of moving object e.g. car
 Super resolution (another topic)



DTU Compute

2023Image Analysis – 0250269 DTU Compute, Technical University of Denmark

Image Registration pipeline
 Pyramid
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The Pyramid Principle
 To ensure robust image registration

From space?From a birdWalking distancePretty closeSome stones?

Very detailed Good overview
Too coarse
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The Pyramid Principle
 To ensure robust image registration

From space?From a birdWalking distancePretty closeSome stones?

Very detailed Good overview
Too coarse
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The Pyramid Principle
 A Multi-resolution strategy
 To ensure robust image registration

– To reduce local minima's
– What is a prober image resolution level ?

C
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Original resolution
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The Pyramid Principle
D
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 Lower image resolution
– Down sampling (memory reduction, fewer data)

 Less structural details
– Smoothing (Complex method settings become more general)
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Image Registration pipeline
 At the end we just select an existing tool
 Still, we need how too select method settings 

– This was the first step in the registration pipeline
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Combining Image Registration pipelines
 First step : Within subjects (Same structure + temporal)
 Second step: Between subjects (different structure+ temporal)

– Can use an iterative procedure to improve registration

 Combine subject-wise transformation metrics by multiplication
 Apply only one interpolation at the end to minimise blurring 

Reference

Within subjects

B
et

w
ee

n 
su

bj
ec

ts

B1

B2

B3
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Quiz 6: Quality inspection - How

A) Use a similarity measure
B) Visual inspection
C) No need it to - just works
D) Sum of square difference
E) Search the internet for experience

How to quality assurance (QA) the image registration results?
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Image Registration pipeline strategy
 Within subjects and between challenges

– E.g. Histology 2D  3D: Structural difference between slices
– Visually inspect your results!!
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Image Registration pipeline strategy
 Within subjects across time points (temporal)

– Remove image distortions + subjection motion
 Visually inspect your results!!

From FSL tool box - EDDY example

Before registration After registration
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What did you learn today?
 Describe difference between a pixel and voxel
 Choose a general image-to-image registration pipeline 
 Apply 3D geometrical affine transformations
 Use the Homogeneous coordinate system to combine transformations
 Compute a suitable similarity metric given the image modalities to 

register
 Compute the normalized correlation coefficient (NNC) between two 

images
 Compute Entropy
 Describe the concept of iterative optimizers
 Compute steps in the gradient descent optimization steps
 Apply the pyramidal principle for multi-resolution strategies
 Select a relevant registration strategy: 2D to 3D, Within- and between 

objects and moving images
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Next week – Real-time face detection using 
Viola Jones method
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